

Hydrology of Closed-Basin Drainages

Harney Basin Study Advisory Committee 20 April 2017

Hank Johnson, U.S. Geological Survey

U.S. Department of the Interior U.S. Geological Survey

Image credit:

By Kmusser - Own work, Elevation data from SRTM, all other features from the National Atlas. Rand McNally, The New International Atlas, 1993 used as reference., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12079426

Image credit:

≈USGS

Robson, S. G and Banta, E.R., 1995, Ground Water Atlas of the United States: Arizona, Colorado, New Mexico, Utah: U.S. Geological Survey Hydrologic Atlas 730-C.

Image credit:

By Kmusser - Own work, Elevation data from SRTM, all other features from the National Atlas. Rand McNally, The New International Atlas, 1993 used as reference., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12079426

Arid with islands of moisture

Lakeview

Range of precipitation in Harney Basin

Bend

Mean annual precipitation, 1981-2010

High : 147 in.

Low : 6 in.

N STANK

Copyright:© 2014 Esri

Canyon

City

Burns

Bur

~ 9 inches

Prineville

Lakeview

City

Range of precipitation in Harney Basin

Bend

Mean annual precipitation, 1981-2010

High : 147 in.

Low : 6 in.

-1-3-4

Copyright:© 2014 Esri

Prineville

Lakeview

~ 25 inches Canyon

Bur

~ 9 inches

Range of precipitation in Harney Basin

Bend

Mean annual precipitation, 1981-2010

High : 147 in.

Low : 6 in.

-1-3-4

Prineville

~ 25 inches Canyon

Range of precipitation in Harney Basin

Bend

Mean annual precipitation, 1981-2010

High : 147 in.

Low : 6 in.

-1-3-4

Lakeview

~ 50 inches

Bur

~ 9 inches

Winter Ridge and Summer Lake

Figure modified from: Thiros, S.A., Paul, A.P., Bexfield, L.M., and Anning, D.W., 2014, The quality of our Nation's waters: Water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009: U.S. Geological Survey Circular 1358, 113 p.

What do hydrologists mean when they talk about the Harney Basin?

- Topographically contained
- Water outside the basin boundary flows in another direction
- Can be visualized as draining a bathtub

ClipartFest, https://clipartfest.com

Image source: Microsoft PowerPoint Clip Art Gallery Used with permission from Microsoft.

IN

NET CHANGE IN ACCOUNT

Image source: Microsoft PowerPoint Clip Art Gallery Used with permission from Microsoft.

IN = OUT ± CHANGE IN STORAGE

<u>IN</u>

- Precipitation (Recharge)
- Interbasin groundwater flow
- Interbasin transfer of water

<u>OUT</u>

- Streamflow
- Evapotranspiration (ET)
- Interbasin groundwater flow
- Interbasin transfer of water
- Commodity export

IN = OUT ± CHANGE IN STORAGE

IN

- Precipitation (Recharge)
- Interbasin groundwater flow
- Interbasin transfer of water

<u>OUT</u>

- Streamflow
- Evapotranspiration (ET)
- Interbasin groundwater flow
- Interbasin transfer of water
- Commodity export

A

VERY PRELIMINARY Water Budget for the **Blue Mountains** and **Steens Mountain Recharge** Areas

BLUE MOUNTAINS RECHARGE AREA

STEENS MOUNTAIN RECHARGE AREA

	- PROVISIONAL DATA - SUBJECT TO REVISION	Blue Mountains	Steens Mountain
IN	Precipitation		
OUT	Evapotranspiration (ET)		
	Streamflow		
	DIFFERENCE		

	- PROVISIONAL DATA - SUBJECT TO REVISION	Blue Mountains	Steens Mountain
IN	Precipitation	18"	
OUT	Evapotranspiration (ET)	5″	
	Streamflow	2″	
	DIFFERENCE	11"	

	- PROVISIONAL DATA - SUBJECT TO REVISION	Blue Mountains	Steens Mountain
IN	Precipitation	18"	22"
Ουτ	Evapotranspiration (ET)	5″	2″
	Streamflow	2"	4″
	DIFFERENCE	11"	16"

	- PROVISIONAL DATA - SUBJECT TO REVISION	Blue Mountains	Steens Mountain
IN	Precipitation	18"	22"
OUT	Evapotranspiration (ET)	5″	2"
	Streamflow	2"	4"
	DIFFERENCE	11"	16″
US (indwater rech imation of sn	

"Recharge" as Percent of Precipitation

Preliminary Calculations for Harney Basin

Blue Mountains	61%		
Steens Mountains	73%		
Other Studies			
Upper Umatilla Basin	36%	Herrera and other, in press	
Klamath Basin	20%	Gannett and others, 2009	
Deschutes Basin	35-40%	Gannett and others, 2001	

Underestimate of ET is the likely culprit

USGS

http://www.oregontrailcenter.org/HistoricalTrails/MulesOrOxen.htm

U. S. GEOLOGICAL SURVEY

Pre-Development

- LOTS of variability annual, decadal, even centuries
- On average, the water budget was balanced

Quasi-Equilibrium

A. CHARACTERISTIC SCARP AT WEST EDGE OF HARNEY VALLEY.

B. VALLEY OF RATTLESNAKE CREEK ABOVE HARNEY.

Surface water diversion and irrigation

Some effect on ET

Groundwater development

- Large increases in ET
- Depletion of storage = declining GW levels

IN

- Precipitation (Recharge)
- Interbasin groundwater flow
- Interbasin transfer of water (*e.g.* canal)

<u>OUT</u>

- Streamflow
- Evapotranspiration
- Interbasin groundwater flow
- Interbasin transfer of water
- Commodity export

Toward a New Quasi-Equilibrium

- Lower water levels in aquifers
- Reduction or loss of streamflow
- Reduction or loss of spring flow
- Decreasing groundwater quality
- Lower lake levels and smaller areal extent

Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p.

Investigation of the Groundwater System of the Harney Basin, Oregon

Stephen B. Gingerich

For the Greater Harney Valley Groundwater Study Advisory Committee April 20, 2017

Burns, OR

Image from Google Earth

Some questions to be addressed

- How much water enters the Harney Basin (recharge)?
- How much water leaves the Harney Basin (discharge)?
- How might water-level declines progress in the future?
- How can water-level declines be managed?
- How does pumping affect surface-water discharge?
- To what degree are different parts of the basin hydrologically connected?

Study Approach

- Compile, review, and analyze existing hydrologic data
- Develop an understanding of the groundwater-flow system
- Collect additional hydrologic data in areas with gaps
- Develop hydrologic budget to estimate water flow in and out of the system
- Develop a numerical groundwater flow model to test our understanding of the flow system and evaluate management options

Compile existing hydrologic data

Next steps

- Continue developing hydrogeologic framework
- Develop and assemble water-budget components

End of Presentation

