

Hydrology of Closed-Basin Drainages

Harney Basin Study Advisory Committee
20 April 2017

Hank Johnson, U.S. Geological Survey

Image credit:

By Kmussner - Own work, Elevation data from SRTM, all other features from the National Atlas. Rand McNally, The New International Atlas, 1993 used as reference., CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=12079426>

Image credit:

Robson, S. G and Banta, E.R., 1995, Ground Water Atlas of the United States: Arizona, Colorado, New Mexico, Utah: U.S. Geological Survey Hydrologic Atlas 730-C.

Image credit:

By Kmussner - Own work, Elevation data from SRTM, all other features from the National Atlas. Rand McNally, The New International Atlas, 1993 used as reference., CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=12079426>

Arid with islands of moisture

Range of precipitation in Harney Basin

Mean annual precipitation, 1981-2010

High : 147 in.

Low : 6 in.

Range of precipitation in Harney Basin

Mean annual precipitation, 1981-2010

High : 147 in.

Low : 6 in.

~ 9 inches

Range of precipitation in Harney Basin

Winter Ridge and Summer Lake

Figure modified from: Thiros, S.A., Paul, A.P., Bexfield, L.M., and Anning, D.W., 2014, *The quality of our Nation's waters: Water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009: U.S. Geological Survey Circular 1358, 113 p.*

What do hydrologists mean when they talk about the Harney Basin?

- Topographically contained
- Water outside the basin boundary flows in another direction
- Can be visualized as draining a bathtub

ClipartFest, <https://clipartfest.com>

Hydrologic Budget

*Image source: Microsoft PowerPoint Clip Art Gallery
Used with permission from Microsoft.*

IN

*Image sources: Microsoft PowerPoint Clip Art Gallery
Used with permission from Microsoft.*

OUT

**NET CHANGE
IN ACCOUNT**

Hydrologic Budget

$IN = OUT \pm CHANGE$

IN
STORAGE

*Image source: Microsoft PowerPoint Clip Art Gallery
Used with permission from Microsoft.*

Hydrologic Budget

$$\text{IN} = \text{OUT} \pm \text{CHANGE IN STORAGE}$$

IN

- Precipitation (Recharge)
- Interbasin groundwater flow
- Interbasin transfer of water

OUT

- Streamflow
- Evapotranspiration (ET)
- Interbasin groundwater flow
- Interbasin transfer of water
- Commodity export

Hydrologic Budget

$$\text{IN} = \text{OUT} \pm \text{CHANGE IN STORAGE}$$

IN

- Precipitation (Recharge)
- Interbasin groundwater flow
- ~~Interbasin transfer of water~~

OUT

- Streamflow
- Evapotranspiration (ET)
- Interbasin groundwater flow
- ~~Interbasin transfer of water~~
- ~~Commodity export~~

A
VERY PRELIMINARY
Water Budget for the
Blue Mountains
and
Steens Mountain
Recharge Areas

BLUE MOUNTAINS RECHARGE AREA

STEENS MOUNTAIN RECHARGE AREA

IN = OUT \pm CHANGE IN STORAGE

	– PROVISIONAL DATA – SUBJECT TO REVISION	Blue Mountains	Steens Mountain
IN	Precipitation		
OUT	Evapotranspiration (ET)		
	Streamflow		
DIFFERENCE			

IN = OUT \pm CHANGE IN STORAGE

– PROVISIONAL DATA – SUBJECT TO REVISION		Blue Mountains	Steens Mountain
IN	Precipitation	18"	
OUT	Evapotranspiration (ET)	5"	
	Streamflow	2"	
	DIFFERENCE	11"	

IN = OUT \pm CHANGE IN STORAGE

– PROVISIONAL DATA – SUBJECT TO REVISION		Blue Mountains	Steens Mountain
IN	Precipitation	18"	22"
OUT	Evapotranspiration (ET)	5"	2"
	Streamflow	2"	4"
	DIFFERENCE	11"	16"

IN = OUT \pm CHANGE IN STORAGE

– PROVISIONAL DATA – SUBJECT TO REVISION		Blue Mountains	Steens Mountain
IN	Precipitation	18"	22"
OUT	Evapotranspiration (ET)	5"	2"
	Streamflow	2"	4"
DIFFERENCE		11"	16"

Groundwater recharge
Sublimation of snow
Error

“Recharge” as Percent of Precipitation

Preliminary Calculations for Harney Basin

Blue Mountains	61%	
Steens Mountains	73%	
Other Studies		
Upper Umatilla Basin	36%	Herrera and other, in press
Klamath Basin	20%	Gannett and others, 2009
Deschutes Basin	35-40%	Gannett and others, 2001

Underestimate of ET is the likely culprit

Pre-Development

- LOTS of variability – annual, decadal, even centuries
- On average, the water budget was balanced

Quasi-Equilibrium

A. CHARACTERISTIC SCARP AT WEST EDGE OF HARNEY VALLEY.

B. VALLEY OF RATTLESNAKE CREEK ABOVE HARNEY.

Surface water diversion and irrigation

- Some effect on ET

Groundwater development

- Large increases in ET
- Depletion of storage = declining GW levels

Hydrologic Budget

$$\text{IN} = \text{OUT} \pm \text{CHANGE IN STORAGE}$$

IN

- Precipitation (Recharge)
- Interbasin groundwater flow
- ~~Interbasin transfer of water (e.g. canal)~~

OUT

- Streamflow
- ~~Evapotranspiration~~
- Interbasin groundwater flow
- ~~Interbasin transfer of water~~
- ~~Commodity export~~

Toward a New Quasi-Equilibrium

- Lower water levels in aquifers
- Reduction or loss of streamflow
- Reduction or loss of spring flow
- Decreasing groundwater quality
- Lower lake levels and smaller areal extent

Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p.

Investigation of the Groundwater System of the Harney Basin, Oregon

Stephen B. Gingerich

For the
Greater Harney Valley Groundwater Study
Advisory Committee
April 20, 2017

Burns, OR

Some questions to be addressed

- How much water enters the Harney Basin (recharge)?
- How much water leaves the Harney Basin (discharge)?
- How might water-level declines progress in the future?
- How can water-level declines be managed?
- How does pumping affect surface-water discharge?
- To what degree are different parts of the basin hydrologically connected?

Study Approach

- Compile, review, and analyze existing hydrologic data
- Develop an understanding of the groundwater-flow system
- Collect additional hydrologic data in areas with gaps
- Develop hydrologic budget to estimate water flow in and out of the system
- Develop a numerical groundwater flow model to test our understanding of the flow system and evaluate management options

Compile existing hydrologic data

Oregon Water Resources Department
Harney County Observation Wells

[Return to Search Page](#)

- State Observation Wells
- HARN 9
- HARN 10
- HARN 75
- HARN 107
- HARN 130
- HARN 147
- HARN 408

Hydrology of Malheur Lake,
Harney County, southeastern Oregon

U.S. GEOLOGICAL SURVEY
Water Resources Investigations 21-75

USGS and OWRD databases

Published hydrology reports

Driller's reports

Private data

HARNEY VALLEY,
HARNEY COUNTY, OREGON

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1939

PREPARED IN COOPERATION WITH
THE UNITED STATES BUREAU OF THE INTERIOR
U.S. GEOLOGICAL SURVEY
AND HARNEY COUNTY COURT

NOVEMBER, 1970

Harney Basin water levels

Next steps

- Continue developing hydrogeologic framework
- Develop and assemble water-budget components

End of Presentation