

Using Geochemical Tracers To Characterize Groundwater Flowpaths

HARNEY BASIN STUDY ADVISORY COMMITTEE 17 APRIL 2018

Hank Johnson, U.S. Geological Survey

U.S. Department of the Interior U.S. Geological Survey

Uses of Geochemical Tracers:

- clarify flowpaths
- estimate travel times
- identify mixing
- identify paleowater
- calibrate numerical models

Stable Isotopes of Oxygen and Hydrogen

- Oxygen-18; ¹⁸O
- Hydrogen-2; Deuterium; ²H
- "stable isotopes"
- Reported in units of "per mil"
- Values are negative

Radioactive Isotope of Hydrogen

- Hydrogen-3; Tritium; ³H
- Half-life of 12.32 years
- "tritium"

 $^{1}H - ^{16}O - ^{2}H$

How do we use these tools?

Deuterium (²H) in winter precipitation

(Friedman et al., 2002)

Deuterium (²H) in winter precipitation (Friedman et al., 2002)

Precipitation gets "lighter" as vapor masses move inland

Condensation of cloud vapor into rain or snow preferentially removes water molecules containing the heavier isotopes, ²H and ¹⁸O

Deuterium (²H) in stream baseflow

(Brooks et al., 2012)

Measured in precipitation

Half-life of 12.32 years

Pre-1945, ³H concentrations were about 3-7 TU

Tritium, decayed to 2018

Tritium, decayed to 2018

Science for a changing world

Tritium, decayed to 2018

Science for a changing world

Results from Harney Basin...

so far...

Stable Isotope Approach

- Upland baseflow and cold springs are proxies for integrated annual recharge
- Wells provide discrete sample of a flowpath
- Time series characterize variability and test our assumptions
- Evaluate data w/r/t hydraulic head and hydrogeology

science for a changing world

Stable isotopic composition of upland baseflow and upland cold springs (Temp < 12°C)

Deuterium values of winter precipitation in the Great Basin (*Friedman et al., 2002*)

Upland baseflow and cold springs from our study: -113 to -128

Some regional differences apparent in samples collected so far

Regional Questions

- Source(s) of water in the Buchanan – Crane – New Princeton corridor
- 2. Source(s) of water to Weaver Springs / Sunset Valley
- 3. Source(s) of water to Warm Springs Valley

Regional Questions

- Source(s) of water in the Buchanan – Crane – New Princeton corridor
- Source(s) of water to Weaver Springs / Sunset Valley
- 3. Source(s) of water to Warm Springs Valley

Science for a changing world

Science for a changing world

Science for a changing world

Tritium High-elevation Steens Mountain Tritium Age Spec. Cond., uS/cm Fish Lake Campground Well, 110 ft blsd 2013-Present; 1975-1981; 1955-1961 52 **Tritium Age** Wells near New Princeton 1222 HARN 1495, 150 ft blsd pre-1945 HARN 1494, 125 ft blsd pre-1950 1907 Malheur Refuge **Tritium Age** Sodhouse Spring 2005-2010; 1979-1982; 1955-1961 296 Warm Spring nr Frenchglen pre-1950 171 Warm Springs Valley **Tritium Age** Hibbard Spring 291 pre-1945 Lower Sizemore Spring pre-1950 296 OO Cold Spring pre-1945 272

2018 Geochemistry Work

- Continue quarterly sampling of springs & Blitzen River on MNWR
- Sample additional upland springs and wells to fill gaps
- Select DEQ samples for tritium and stable isotope analysis
- Evaluate geochemistry data collected by Crane HS
- Collect new age-tracer data from selected wells and springs

References Cited

Brooks, J.R., Wigington, P.J., Phillips, D.L., Comeleo, R., and Coulombe, R., 2012, Willamette River Basin surface water isoscape (δ 18O and δ 2H): temporal changes of source water within the river: Ecosphere, v. 3, no. 5, p. 21.

Friedman, I., Smith, G.I., Johnson, C.A., and Moscati, R.J., 2002, Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation: Journal of Geophysical Research: Atmospheres, v. 107, no. D19, p. ACL 15-11-ACL 15-22.

Jurgens, B.C., Böhlke, J.K., and Eberts, S.M., 2012, TracerLPM (Version 1): An Excel[®] workbook for interpreting groundwater age distributions from environmental tracer data: U.S. Geological Survey Techniques and Methods Report 4-F3, 60 p.

